

Applying Machine Learning Techniques in

Software Engineering

BITS ZG628T: Dissertation

by

 Vijayshinva B. Karnure

2013HT13433

Dissertation work carried out at

HARMAN International (India) Pvt. Ltd. Bangalore

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE

PILANI (RAJASTHAN)

October 2015

Applying Machine Learning Techniques in

Software Engineering

BITS ZG628T: Dissertation

by

Vijayshinva B. Karnure

2013HT13433

Dissertation work carried out at

HARMAN International (India) Pvt. Ltd. Bangalore

 Submitted in partial fulfillment of M.Tech. Software Systems

Under the Supervision of

Raghuraman Rajagopalan, Director – Technology

HARMAN International (India) Pvt. Ltd. Bangalore

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE

PILANI (RAJASTHAN)

October, 2015

i

ii

Birla Institute of Technology & Science, Pilani

Work-Integrated Learning Programmes Division

First Semester 2015-2016

BITS ZG628T: Dissertation

ABSTRACT

BITS ID No. : 2013HT13433

NAME OF THE STUDENT : Vijayshinva B. Karnure

EMAIL ADDRESS : 2013ht13433@wilp.bits-pilani.ac.in

STUDENT’S EMPLOYING : HARMAN International (India) Pvt. Ltd.

ORGANIZATION & LOCATION Bangalore

SUPERVISOR’S NAME : Raghuraman Rajagopalan

SUPERVISOR’S EMPLOYING : HARMAN International (India) Pvt. Ltd.

ORGANIZATION & LOCATION Bangalore

SUPERVISOR’S EMAIL ADDRESS: Raghuraman.Rajagopalan@Harman.com

DISSERTATION TITLE : Applying Machine Learning Techniques in Software

Engineering

iii

iv

ACKNOWLEDGEMENTS

This project would not have been possible without the support of many people. I

would like to acknowledge and extend my heartfelt gratitude to the following

persons who have made the completion of this project possible.

My supervisor, Raghuraman Rajagopalan, for his full support and guidance

throughout this project.

My additional examiner, Vijaya Kumar Reddy Gajjala for encouraging and

supporting me to pursue the project.

Prof. S.R.K. Prasad Talasila from BITS Goa, for giving his feedback at various

stages of the project which acted as a motivation for working on the project.

My colleague, Sagar Mattoo for proof-reading the dissertation thesis.

Last but not the least, I would like to express my love and gratitude to my beloved

family, for their understanding & motivation, through the duration of this project.

v

Table of Contents

CERTIFICATE .. i

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... iv

Chapter 1: Introduction .. 1

1.1 Current state of software development ... 1

Chapter 2: Git Version Control System ... 3

2.1 The Distributed Version Control System ... 3

2.2 Git Internals .. 3

2.3 Developer Workflow .. 4

2.6 Metrics extracted from a Git Repository .. 5

Chapter 3: Code Analysis ... 6

3.1 Code Metrics .. 6

3.2 Microsoft .NET Compiler Platform aka Project Roslyn 6

Chapter 4: Clustering the pull requests... 9

4.1 Machine Learning using Python... 9

4.2 K-Means Clustering ... 9

Chapter 5: Putting it all together ... 11

5.1 Workflow ... 11

5.2 A Case Study .. 12

Summary ... 14

Directions for future work .. 14

References ... 15

vi

List of Figures

Figure 1: Software is an amalgamation of code change sets 2

Figure 2: A pictorial representation of Git branching generated using the Git

Extensions Tool for the GitHub project dotnet/roslyn .. 4

Figure 3: Metrics extracted from code files. ... 6

Figure 4: Machine Learning - Clustering .. 9

Figure 5: Features Extracted from Pull Requests .. 10

Figure 6: Workflow .. 11

Figure 7: Machine Learning Workflow ... 12

Figure 8: Dataset generated for dotnet/roslyn ... 12

Figure 9: Resultant clusters of pull requests for dotnet/roslyn 13

Figure 10: Visualization of the resultant clusters. ... 13

vii

List of Abbreviations Used

API Application Programming Interface

DVCS Distributed Version Control System

PR Pull Request

REST Representational State Transfer

SaaS Software as a service
Sklearn SciKit-Learn Python Package

VCS Version Control System

1

Chapter 1: Introduction

1.1 Current state of software development

Software development has come a long way since the seventies. Over the

years several methodologies where developed and used. Now a days enterprises

developing software have mostly settled into using an iterative incremental

development model. Teams develop themes based on their project requirements.

Themes are then broken down into self-contained units of work which are agreed

upon by the developers and stakeholders. Developers own these units and work on

them independently. Periodic integrations of these units happen as and when

developers complete their implementation.

Open source projects rely on a community of developers who voluntarily

contribute code to the project. Many successful community-led open source

projects have been implemented over the years and the numbers continue to grow.

In an open source project, developers contribute by submitting code changes that

may implement new features or improve existing ones following a process agreed

upon by the owners of the project.

When it comes to managing these software development projects, software

development tools play an instrumental part. Any large scale software development

project, either enterprise or open source at the bare minimum will need an Issue

Tracking System and a Version Control System. The complexity rating or weightage

given for each feature or module implementation is usually based on the project

manager and developers intuition. Experience and familiarity of the project

environment are major influences in deciding these scores.

The Issue Tracking System helps the team track and plan, tasks and issues.

This is vital for proper collaboration between the team members and also multiple

teams. Developers and stake holders can discuss, plan and prioritize their tasks.

The Version Control System acts as the repository, for the code changes the team

of developers is doing. The Version Control System tracks in detail, the changes to

the code along with other metadata like the author of the change. The Version

Control System and the Issue Tracking System are often integrated. This

integration allows teams to map business requirements to feature implementations

and ultimately the code change sets. The team can get a clear picture of every code

change that was ever made, the reason it was made and references to the features

added.

The Version Control System is a central piece in the entire puzzle of software

development, as it is a record of the entire history of the project. Each feature or

module implemented in a project has a corresponding code change set in the

Version Control System. Current Version Control Systems do a good job of

recording even minute details like the exact lines of code that were changed as part

of a feature implementation.

2

The entire software project can be described as an amalgamation of these

individual code change sets. The code change set is the tangible effort that was put

in by the developer to implement a particular feature, module or fix. Various

metrics can be extracted out of these code change sets. An analysis of these

metrics can provide useful insights into the various features that were implemented

for the project.

Figure 1: Software is an amalgamation of code change sets

As code change sets are the ultimate truth of a feature implementation in a

software project, in this dissertation the metrics extracted from these code change

sets are going to be used to relatively compare software features that were

implemented. This relative comparison can help project manager to gauge their

estimation in hindsight.

Feature A

Code Change
Set A

Feature B

Code Change
Set B

Bugfix A

Code Change
Set A

Feature C

Code Change
Set C

Feature D

Code Change
Set D

3

Chapter 2: Git Version Control System

2.1 The Distributed Version Control System

The Git Version Control System (Chacon & Straub, 2014) introduced in the

year 2005, has grown leaps and bounds and is now a dominant player in the

Version Control market. Most Version Control Systems prior to Git, were

centralized. A central server maintained the source, along with its change history.

Developers could check out files to make changes and implement new features.

Git changed the game by introducing a concept of Distributed Version Control

System. Each client of the DVCs would basically mirror the entire repository from

the central server. This way, the developers work independently on their own copy

of the source code. When they are ready to contribute their changes, developers

can merge their code changes with their peer repositories. In a DVCS all the clients

basically act as backups for the repository, as each one has an exact clone of it.

 Being a DVCS, Git does not require a central server. But a central Git server

helps in collaboration. It acts as a starting point, from where new developers can

clone their repositories. It also acts as a central repository to which developers can

push their code changes and merge as required. The central server that maintains

the repositories for all projects is called a Remote Git Repository.

 SaaS providers like GitHub and BitBucket, provide Git as a service for

clients to consume. Remote repositories can be hosted on GitHub or BitBucket at a

nominal cost and the service providers take care of managing and administering the

servers. GitHub boasts hosting over 28 million projects (About GitHub, 2015) as on

date. These service providers also expose REST APIs which can be queried to get

details about a Remote Git Repository.

2.2 Git Internals

A Git Repository is basically a folder structure which Git tracks. As and when

developers make changes to this folder like adding new files, modifying existing

files or deleting files, Git keeps track of all the changes. Periodically developers

commit their changes. A commit creates a differential snapshot of the folder

structure. A commit can act as a rollback point in case the developers want to

revert their changes. Since these commits are differential snapshots Git also

records the parent commit as part of the commit history.

By default every Git Repository has a default branch called the master

branch. This branch is usually the ready to deploy branch, which gets deployed to

production. Developers can create other branches from this main branch to work

independently on their changes. With newer commits, branches move forward

independently of each other. Branches can also be merged, where changes from

one branch are pulled into another.

4

When developers are ready to contribute their changes to the main branch,

an approval process is usually in place. The approval can be a peer review of the

code or a simple sign off from the owner. This is achieved using a pull request in

Git. A pull request encapsulates all the changes that were made to implement a

particular feature. It can also be looked at as a series of code commits that the

developer made as he/she implemented the feature.

Figure 2: A pictorial representation of Git branching generated using the Git Extensions Tool for the

GitHub project dotnet/roslyn

2.3 Developer Workflow

The industry is eagerly adopting Continuous Integration and Continuous

Deployment. The project team is required to always have their code base ready to

deploy. A typical developer workflow using Git is as follows.

1. A central project repository is created on a Git server.

2. This repository has a default source code branch called the master branch,

which has the latest and greatest ready to deploy code for the project.

3. Developers clone this repository to start working on their changes

4. To implement a feature, developers create a branch out of the main branch.

5. Developers make changes to their local copy of the source code and commit

changes on their respective branches.

5

6. Once the developers are convinced that the changes are good enough to be

merged with the master branch, they create a pull request.

7. The pull request encapsulates changes to all the files that were made by a

developer to implement a particular feature.

8. The pull request is then reviewed by the project owner, who either approves

or rejects the changes.

9. Once the pull request is approved, the branch is merged into the master

branch and is ready for deployment.

As and when developers contribute source code, the master branch keeps

moving forward. Developers working on their respective branches periodically pull

the master branch and merge it, so that they keep getting the latest updates.

Project teams develop their own branching strategy based on their experiences.

For example, some teams maintain a futures branch, where all new features are

merged instead of the master branch. This keeps the master branch always ready

to deploy and any new feature implementations do not interfere with the existing

source code.

One way of looking at the entire project is as a series of pull requests

merged together. Each pull request either added a new feature or fixed an existing

issue. The code change that went in with each pull request is the tangible effort put

in by the developer to implement the feature.

2.6 Metrics extracted from a Git Repository

 Git exposes its internals using a standard API. The libgit2 library is a native

C library implementation that exposes all the functionality of Git. A .NET wrapper

around this library is called the libgit2sharp. Similarly Git hosting services like

Bitbucket and GitHub expose REST APIs, which can be queried to get details of

Remote Git Repositories.

 In this project GitHub REST APIs are used to get a list of all pull requests for

a particular Git repository. Each pull request usually corresponds to a branch, a

developer created to implement a feature and has a bunch of commits associated

with it. Git APIs are then used to extract the code changes as part of these

commits.

 The following metrics are extracted for each pull request,

1. Count of files changed

2. Count of code lines added

3. Count of code lines removed

Apart from the above mentioned metrics, each line of code that was actually

changed is also extracted for further analysis.

6

Chapter 3: Code Analysis

3.1 Code Metrics

 Code metrics, were developed to answer the existential question of, “How

complex is the code?” There are many well defined software metrics in use, in the

industry today. Cyclomatic complexity, Maintainability index, Lines of code, Code

coverage are a few to mention. Each metric, in its own way tries to standardize and

quantize a measure that can define the characteristics of the software code.

 In this study, the following metrics are extracted from code files,

1. Number of Expression Statements

2. Number of Branching Statements

3. Number of Looping Constructs

4. Number of Exception Handling Statements

Figure 3: Metrics extracted from code files.

These metrics give us an idea of the composition of the code change set, in

terms of the kinds of programming statements used. For example, if a particular

pull request has more number of “If” statements we can conclude that the feature

implemented, required more decision making.

3.2 Microsoft .NET Compiler Platform aka Project Roslyn

 The Microsoft .NET framework is a popular development platform in the

industry today. Its capabilities and the maturity of the tooling around it, has made

it a popular choice for software implementation. An interesting project by Microsoft,

codenamed Roslyn was to create an open source version of the .NET language

Code
Change

set

Expression
Statements

Looping
Constructs

Excecption
Handling

Statements

Branching
Statements

7

compilers. As part of the compiler project, code analysis was also built in. The .NET

compiler platform exposes this code analysis functionality as a standard API.

 Given a line of C# or VB.NET code, the Roslyn code analysis framework can

categorize the statement based on its kind, like local declaration statement, if

statement, expression statement etc.

 Passing the lines of code extracted for each pull request, the Roslyn code

analysis framework can churn out the count of each kind of language statement

that was used to implement the feature.

 The following metrics are extracted using the Roslyn code analysis

framework,

1. Number Of Expression Statements

a. Expression Statement

b. Labeled Statement

c. Using Statement

d. Lock Statement

e. Local Declaration Statement

f. Empty Statement

g. Unsafe Statement

h. Fixed Statement

i. Unchecked Statement

j. Checked Statement

k. Block Statement

2. Number of Branching Statements

a. If Statement

b. Continue Statement

c. Return Statement

d. Switch Statement

e. Goto Statement

f. GotoDefault Statement

g. GotoCase Statement

3. Number of Looping Constructs

a. For Statement

b. Do Statement

c. ForEach Statement

d. While Statement

e. YieldReturn Statement

f. YieldBreak Statement

g. Break Statement

4. Number of Exception Handling Statements

a. Try Statement

b. Throw Statement

8

These metrics are only calculated, if the file changed is written in C# or

VB.NET. Other files like configuration files, project files are basically ignored.

These metrics roughly describe the composition of a code change set and can

be used as a representation of a particular software feature implemented. A counter

argument can be made, that different developers have different styles of coding

and the same functionality can be written in different lines of code. That is true to

some extent, but in most projects as developers are subjected to repeated code

reviews, a consistency evolves. Automated code refactoring tools are also available

and widely used by enterprises.

9

Chapter 4: Clustering the pull requests

4.1 Machine Learning using Python

 Machine Learning concepts can be implemented using a wide variety of tools.

SciKit-Learn (Pedregosa, et al., 2011) is a robust open source python library that

can be used to implement machine learning concepts. SciKit-Learn provides most of

the machine learning algorithms for classification, clustering and regression out of

the box. Python distributions like Anaconda (Anaconda - Modern open source

analytics platform, 2015) package together, all necessary python packages for data

analysis making it easy for the community to install and use them.

4.2 K-Means Clustering

 K-Means is a well-known unsupervised clustering algorithm which works with

points in a vector space. K-Means groups together items in a dataset into K clusters

usually based on their Euclidean distance measure. The items in a cluster will have

lower Euclidean distance scores compared to ones outside the cluster.

 K-Means works by

1. Choosing k centroids. The centroids can be random or use an initializing

algorithm like kmeans++ (Arthur & Vassilvitskii, 2007) which initializes the

centroid as distant from each other as possible

2. For each item in the data set calculate its distance from all centroids and

assign it to the cluster of the nearest centroid.

3. Improve the centroids by computing the mean value of all the distances

calculated in the previous step and choose them as the centroids.

4. Repeat step 2 and 3 until the centroids stop making any significant change in

the clusters.

Figure 4: Machine Learning - Clustering

A good clustering run, should result in high inter cluster distances and low

intra cluster distances. SciKit-Learn implements the KMeans algorithm for clustering

data in the sklearn.cluster module. The KMeans algorithm is exposed as a class that

implements a fit method, which learns the clusters from the input dataset. The

labels_ attribute holds the cluster labels that the algorithm generates.

Dataset
Feature

Extraction
Clustering Cluster

Cluster

Cluster

10

The input dataset to the K-Means clustering algorithm, are the features

derived from the merged pull requests. The dataset has seven dimensions namely

1. Count of files changed

2. Count of code lines added

3. Count of code lines removed

4. Number of Expression Statements

5. Number of Branching Statements

6. Number of Looping Constructs

7. Number of Exception Handling Statements

These seven dimensions roughly describe the composition of a change code

set and can be used as a description of a particular software feature

implementation.

Figure 5: Features Extracted from Pull Requests

An issue with the KMeans algorithm is that it requires the number of clusters

as an input. What is a good value for the number of clusters really depends on the

input dataset. Silhouette analysis (Rousseeuw, 1987) can be used to determine the

natural number of clusters for a dataset. The higher the separation between

clusters, the higher is the value. A value of +1 indicates that the clusters are

strongly separated. A value of -1 indicates that the clusters are vague. A value of 0

indicates a borderline case.

Silhouette analysis is susceptible to outliers in the dataset. If the dataset

contains an outlier, a value of two for the number of clusters will show a high

silhouette coefficient value. An acceptable target value for the silhouette coefficient

value is 0.5, which gives good clusters in general, but further study is required.

Pull
Request

Files
Changed

Lines
Removed

Expression
Statements

Lines Added
Branching

Statements

Looping
Constructs

Exception
Handling

Statements

11

Chapter 5: Putting it all together

5.1 Workflow

The following chart summarizes all the steps described in the earlier

chapters.

Figure 6: Workflow

 This will result in clusters, where ‘similar’ pull requests end up together. For

this, a tool called GitExtract was written in C# that performed the first three steps.

Given a GitHub repository, GitExtract analyzes all the merged pull requests and

extracts the seven defined metrics for each. The dataset generated is then fed to a

Python script called clusterify.py which uses SciKit-Learn to generate clusters using

the K-Means algorithm. The script runs the K-Means algorithm iteratively with

varying K (number of clusters) and calculates the Silhouette scores. The number of

clusters that achieves an approximate Silhouette score of 0.5 is used. The script

then labels the input data set based on the clusters generated.

GitHub API

• Extract pull requests that where merged to the master branch.

• Extract commits for each pull request.

Git API

• Calculate the difference between the first and last commit on each
branch.

• Using the difference, extract count of files changed, lines added,
lines removed and each line of code changed.

.NET Analysis
Framework

• For each line of code changed determine the kind of statement.

• Group these statements together to determine the number of
expression, control, looping and exception handling statements.

SciKit-Learn
KMeans

clustering

• Use the metrics extracted from all the branches for a particular
repository and cluster them using the KMeans algorithm.

• Run multiple iterations of the clustering algorithm to arrive at an
optimal cluster count.

12

Figure 7: Machine Learning Workflow

5.2 A Case Study

 The above approach was applied to an open source project repository hosted

at https://github.com/dotnet/roslyn. This is the source code repository for the .NET

compilers project and is continuously maintained and developed by the .NET team

at Microsoft.

 As on date 2254 pull requests where merged in the code repository. The run

resulted in a [2254, 7] dataset, a sample of which is shown below.

Figure 8: Dataset generated for dotnet/roslyn

 105 clusters where created as it resulted in an approximate silhouette score

of 0.5. A sample of the results are in Figure 9. The cluster labels in themselves do

not mean anything, but from the results we can now infer that pull requests with

the label 75 are ‘similar’.

Dataset

•Pull Requests
of a Git
Repository

•Merged with
master branch

Feature
Extraction

•# Files Changed

•# Lines Added

•# Lines
Removed

• # Expression
Statements

•#Branching
Statements

•# Looping
Constructs

•# Exception
Handling
Statements

Clustering

•KMeans
clustering

•Kmeans++

•Silhouette
analysis

Cluster

Cluster

Cluster

https://github.com/dotnet/roslyn

13

Figure 9: Resultant clusters of pull requests for dotnet/roslyn

Visualizing the resultant clusters is difficult as the input dataset has seven

dimensions. To visualize the clusters in a 2D plot, the dataset is subjected to

Principal Component Analysis (scikit-learn-developers, A demo of K-Means

clustering on the handwritten digits data, 2015).

Figure 10: Visualization of the resultant clusters. Centroids of the clusters are marked.

14

Summary

 This dissertation presents a study that uses Machine Learning techniques in

Software Engineering. This study groups pull requests with similar code change sets

together. The similarities are based on tangible metrics, generated from code

change sets, implemented by developers. This grouping can help project managers

gain useful insights into their projects.

 In hindsight project managers can compare different pull requests. This can

give project managers an insight into the effort put in by different developers. The

model can be used for predictive analysis as well. Consider a software feature

currently under development on an independent branch. Metrics derived from that

branch can be used to figure out which cluster the branch currently lies in. This can

help a project manager, take decisions based on experience of the earlier pull

requests. The team can adjust timelines, risk categorization, testing strategies

etc., based on other pull request experience.

Directions for future work

 The work done in this dissertation can be further improved and expanded.

Some of the ideas are listed below.

1. Outliers in the input dataset can skew the clustering. A mechanism to deal

with outliers has to be implemented. Improvements in determining the

number of clusters also needs to be worked on.

2. Infer additional data of pull requests from the linked Issue Management

System like bug metrics, schedule adherence

15

References

About GitHub. (2015, October). Retrieved from GitHub: https://github.com/about

Anaconda - Modern open source analytics platform. (2015). Retrieved from

Continuum Analytics: https://www.continuum.io/why-anaconda

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful

seeding. Eighteenth annual ACM-SIAM symposium on Discrete algorithms.

Society for Industrial and Applied Mathematics.

Chacon, S., & Straub, B. (2014). Pro Git. Apress.

dotnet/roslyn. (2015). Retrieved from .NET Compiler Platform ("Roslyn"):

https://github.com/dotnet/roslyn

GitHub API v3. (2015). Retrieved from GitHub Developer:

https://developer.github.com/v3/

Hummel, J., & Neward, T. (2014, November). The Working Programmer : Rise of

Roslyn. MSDN Magazine.

libgit2/libgit2sharp. (2015). Retrieved from LibGit2Sharp:

https://github.com/libgit2/libgit2sharp

Neward, T., & Hummel, J. (2015, February). The Working Programmer - Rise of

Roslyn, Part 2: Writing Diagnostics. MSDN Magazine.

Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, . . . Duchesnay. (2011).

Scikit-learn: Machine Learning in Python. Journal of Machine Learning

Research, 2826-2830.

Rousseeuw, P. (1987). Silhouettes: a Graphical Aid to the Interpretation and

Validation of Cluster Analysis. Journal of Computational and Applied

Mathematics, 53-65.

scikit-learn-developers. (2015). A demo of K-Means clustering on the handwritten

digits data. Retrieved from scikit-learn 0.16.1 documentation: http://scikit-

learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html

scikit-learn-developers. (2015). A demo of K-Means clustering on the handwritten

digits data. Retrieved from scikit learn: http://scikit-

learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html

scikit-learn-developers. (2015). Selecting the number of clusters with silhouette

analysis on KMeans clustering. Retrieved from scikit-learn 0.16.1

documentation: http://scikit-

learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.ht

ml

16

scikit-learn-developers. (2015). sklearn.cluster.KMeans. Retrieved from scikit-learn

0.16.1 documentation: http://scikit-

learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Turner, A. (2014, Special connect() Issue). C# and Visual Basic - Use Roslyn to

Write a Live Code Analyzer for Your API. MSDN Magazine.

